COMBINATIONS

MODULE-9

QUESTIONS

At least \rightarrow minimum (\geq)

Q1) In an examination, a question paper consists of 12 questions divided into two parts, Part I and Part II, containing 5 and 7 questions, respectively. A student is required to attempt 8 questions in all, selecting at least 3 from each part. In how many ways can a student select the questions?

Alternative	Part I (out of 5)	Part II (out of 7)	No. of ways
(i)	3	5	${ }^{5} C_{3} \times{ }^{7} C_{5}$
(ii)	4	4	${ }^{5} C_{4} x^{7} C_{4}$
(iii)	5	3	${ }^{5} C_{5} x^{7} C_{3}$

Required no. of ways of making a selection

$$
\begin{aligned}
& ={ }^{5} C_{3} x^{7} C_{5}+{ }^{5} C_{4} x^{7} C_{4}+{ }^{5} C_{5} x^{7} C_{3} \\
& =\frac{5 \times 4}{1 \times 2}+\frac{7 \times 6}{1 \times 2}+5 \times \frac{7 \times 6 \times 5}{1 \times 2 \times 3}+1 \times \frac{7 \times 6 \times 5}{1 \times 2 \times 3} \\
& =10 \times 21+5 \times 35+1 \times 35 \\
& =210+175+35=420
\end{aligned}
$$

Q2) Determine the no. of 5-card combinations out of a deck of 52 cards if each selection of 5 cards has exactly one king
King $\rightarrow 4$
Remaining $\Longrightarrow 48$

No. of 5-card combinations $={ }^{4} C_{1} \times{ }^{48} C_{4}$

QUESTIONS......

```
At least \(\rightarrow \geq\) (min)
At most \(\rightarrow \leq\) (max)
```

Q3) A committee of 7 has to be formed from 9 boys and 4 girls. In how many ways can this be done when the committee consists of :
(i) exactly 3 girls ?

Boys	Girls
9	4

No. of ways of selecting exactly 3 girls

$$
={ }^{9} C_{4} \times{ }^{4} C_{3}=\frac{9 \times 8 \times 7 \times 6}{4 \times 3 \times 2 \times 1} \times 4=504
$$

(ii) at least 3 girls?

Girls	Boys
3	4
4	3

(iii) at most 3 girls?

Girls	Boys
0	7
1	6
2	5
3	4

No. of ways of selecting at most 3 girls

$$
\begin{aligned}
& ={ }^{4} C_{0} \times{ }^{9} C_{7}+{ }^{4} C_{1} \times{ }^{9} C_{6}+{ }^{4} C_{2} \times{ }^{9} C_{5}+{ }^{4} C_{3}{ }^{9}{ }^{9} C_{4} \\
& =1 \times \frac{9!}{2!7!}+4 \times \frac{9!}{3!6!}+\frac{4!}{2!2!} \times \frac{9!}{5!4!}+4 \times \frac{9!}{4!5!} \\
& =36+336+756+504=1632 .
\end{aligned}
$$

No. of ways of selecting at least 3 girls

$$
\begin{aligned}
& ={ }^{4} C_{3} \times{ }^{9} C_{4}+{ }^{4} C_{4} \times{ }^{9} C_{3}=\frac{4!}{3!} \times \frac{9!}{4!5!}+1 \times \frac{9!}{3!6!} \\
& =504+84=588 .
\end{aligned}
$$

QUESTIONS.....

Q4) We wish to select 6 persons from 8, but if the person A is chosen, then B must be chosen. In how many ways can the selection be made?

Case (i): when person A is not chosen:

6 persons can be selected from the remaining 7 persons in ${ }^{7} C_{6}$ ways.

Case (ii): when person A is chosen:
Then person B has to be chosen. 4 more persons have to be chosen from the remaining 6 in 6_{6} ways.

Total no. of selection $={ }^{7} C_{6}+{ }^{6} C_{4}$

$$
=7+\frac{6!}{2!4!}=7+15=22
$$

Q5) From a class of 25 students, 10 are to be chosen for an excursion party. There are 3 students who decide that either all of them join or none of them will join. In how many ways can the excursion party be chosen?

Case (i): If all 3 students are included:
7 more students have to be chosen from the remaining 22 students in ${ }^{22} \mathrm{C}_{7}$ ways.

Case (ii): If all $\mathbf{3}$ students are not included:

10 students have to be chosen from the remaining 22 students in ${ }^{22} \mathrm{C}_{10}$ ways.
\therefore Required no. of ways $={ }^{22} c_{7}+{ }^{22} c_{10}$

QUESTIONS.......

Q6) In how many ways can a committee of 5 persons with a chairperson be selected from 12 persons?

No. of ways of selecting a chairperson from
12 persons $={ }^{12} \mathrm{C}_{1}$ ways.
And the remaining 4 persons can be selected from the remaining 11 in ${ }^{11} \mathrm{c}_{4}$ ways.

And $\Rightarrow x$
\therefore Total no. of ways $={ }^{12} C_{1} \times{ }^{11} C_{4}$

$$
=12 \times \frac{11 \times 10 \times 9 \times 8}{4 \times 3 \times 2 \times 1}
$$

$12 \times 330=3960$.

Q7) Out of 12 points in a plane, no three are in the same line except five points which are collinear. Find the no. of lines that can be formed.

No. of lines formed from 12 points taking 2 at a time ${ }^{12} \mathrm{C}_{2}$
No. of lines formed from 5 points taking 2 at a time $={ }^{5} C_{2}$
But 5 collinear points, when joined pairwise, results in only one line.
Required no. of straight lines $={ }^{12} C_{2} \quad-{ }^{5} C_{2}+1$

QUESTIONS.....

Q 8). If ${ }^{n} C_{r-1}=36^{n} C_{r}=84$ and ${ }^{n} C_{r+1}=126$, then find the value of ${ }^{r} C_{2}$

Sol. We know that $\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}=\frac{n-r+1}{r}$

$$
\begin{array}{ccc}
& \therefore & \frac{n-r+1}{r}=\frac{84}{36} \text { (given) } \\
& \Rightarrow & \frac{n-r+1}{r}=\frac{7}{3} \quad \Rightarrow 3 n-3 r+3=7 r \\
& \Rightarrow & \frac{10 r-3 n=3 \quad----- \text { (i) }}{{ }^{n} C_{r+1}}=\frac{n-(r+1)+1}{r+1}=\frac{126}{84} \quad \text { (given) } \\
& & \\
& & \frac{n-r}{r+1}=\frac{3}{2} \quad \Rightarrow 2 n-2 r=3 r+3 \\
\Rightarrow & & 2 n-5 r=3 \quad------ \text { (ii) }
\end{array}
$$

Solving (i) and (ii), we get $n=9$ and $r=3$.

$$
\therefore \quad{ }^{r} C_{2}={ }^{3} C_{2}=3
$$

Q9) Find the no. of ways in which we can choose a committee from four men and six women, so that the committee includes at least two men and exactly twice as many women as men.

At least 2 2 and more

Men	Women
2	4
3	6

Required no. of committee formed

$$
\begin{aligned}
& ={ }^{4} C_{2} \times{ }^{6} C_{4}+{ }^{4} C_{3} \times{ }^{6} C_{6} \\
& =\frac{4 \times 3}{2} \times \frac{6 \times 5}{2}+4 \times 1 \\
& =6 \times 15+4=94
\end{aligned}
$$

QUESTIONS.....

HOMEWORK QUESTIONS

1) There are 7 boys and 4 girls in a class. In how many ways can a team of 5 members be selected if the team has (i) no girls (ii) at least one boy and one girt (iii) at least 3 girls?
2) A committee of 3 members is to be formed out of 5 men and 2 women. Find the no. of ways of selecting the committee, if it is to consist of at least one woman.
3) In an examination, a question paper consisting of 10 questions is divided into two parts A and B, each part consisting of 5 questions. A student is required to attempt 6 questions in all, taking at least 2 questions from each part. In how many ways can the student select the questions?
4) Three balls are drawn from a bag containing 5 red, 4 white and 3 black balls. Find the no. of ways in which this can be done if at least two are red balls.
5) If ${ }^{n} P_{r}=840$ and ${ }^{n} C_{r}=35$ find ' n ' and ' r '.

ANSWERS:
Q1) (i) 21 (ii) 441 (iii) $91 \quad$ Q2) 25 Q3) $200 \quad$ Q4) $80 \quad$ Q5) $r=4, n=7$.

